CodeScene's early warning feature helps detect future maintenance problems before they become problems.
A codebase under active development evolves at a rapid pace, and as soon as the organization scales beyond 10-12 people it’s virtually impossible for a single individual to maintain a holistic picture of the system.
The roots of future maintenance problems are often introduced in change bursts, perhaps by shoehorning a new feature into an existing design, and from there they only grow worse over time. Wouldn’t it be great if you could get an early warning when that happens so that you can take appropriate counter measures and save your code from decay?
What’s an Early Warning?
The CodeScene tool offers the ability to detect potential maintenance problems and early warnings in your codebase. The earlier you react to those findings, the better, so let’s look at a few examples.
The following figure shows an example on three different warnings auto-detected by CodeScene in Google's TensorFlowcodebase. TensorFlow is a library for machine learning, and the warnings are highlighted using yellow tiles: